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Abstract. The proper description of hadronic decays of baryon resonances has been a long-standing prob-
lem in soliton models for baryons. In this paper I present a solution to this problem in the three-flavor
Skyrme model that is consistent with large-N¢ consistency conditions. As an application I discuss hadronic
pentaquark decays and show that predictions based on axial current matrix elements are erroneous.

PACS. 11.15.Pg Expansions for large numbers of components (e.g., 1/N. expansions) — 12.39.Dc

Skyrmions — 13.75.Jz Kaon-baryon interactions

1 Introduction

Commonly hadronic decays of baryon resonances are de-
scribed by a Yukawa interaction of the generic structure
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where B’ is the resonance that decays into baryon B and
meson ¢ and g is a coupling constant. It is crucial that
this interaction Lagrangian is linear in the meson field.

The situation is quite different in soliton models that
are based on action functionals of only meson degrees of
freedom, I = I'[®]. These action functionals contain clas-
sical (static) soliton solutions, @, that are identified as
baryons. The interaction of these baryons with mesons
is described by the (small) meson fluctuations about the
soliton: @ = & + ¢. By pure definition, we have

—6F[¢] =0. (2)
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Thus, there is no term linear in ¢ to be associated with the
Yukawa interaction, eq. (1). This puzzle has become fa-
mous as the Yukawa problem in soliton models. However,
this does not mean that hadronic decays of resonances
cannot be described in soliton models. Rather they have
to be extracted from meson baryon scattering amplitudes,
just as in experiment. In soliton models two-meson pro-
cesses acquire contributions from the second-order term
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This expansion simultaneously represents an expansion in
N¢, the number of color degrees of freedom: I' = O(N¢),
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I'® = O(NY) while terms O(¢?) vanish in the limit
N¢ — oo. This implies that I'® contains all large-N¢ in-
formation about hadronic decays of resonances. We may
reverse that statement to argue about computations of
hadronic decay widths in soliton models: Their results and
those obtained from I'® must be identical in the limit
N¢e — oo. Unfortunately, the most prominent baryon res-
onance, the A, becomes degenerate with the nucleon as
Ne — oo. It is stable in that limit and its decay is not
subject to the above-described litmus test. The situation
is more interesting when extending soliton models to fla-
vor SU(3). In the so-called rigid-rotator approach (RRA)
that generates baryon states as (flavor) rotational exci-
tations of the soliton, resonances emerge that dwell in
the anti-decuplet representation of flavor SU(3). The most
discussed (and disputed) such state is the ©F pentaquark
with zero isospin and strangeness S = +1. In the limit
N¢ — oo the anti-decuplet states maintain a non-zero
mass difference with respect to the nucleon. Therefore,
the decay properties of @1 as predicted in any soliton
model must also be seen in the S-matrix for koan-nucleon
scattering as computed from I'®), In the S = —1 sector
the resulting equations of motion for ¢ yield a P-wave
bound state whose occupation serves to describe the ordi-
nary hyperons, A, X', X* etc. Therefore this treatment of
hyperon states is called the bound-state approach (BSA).
The above-discussed litmus test requires that the BSA
and RRA give identical results for the @ properties as
N¢e — o00. This did not seem to be true and it was argued
that the prediction of pentaquarks would be a mere arti-
fact of the RRA [1]. Here we will show that this conclusion
is premature and that pentaquark states do indeed emerge
in both approaches. Furthermore, the comparison between
the BSA and RRA provides an unambiguous computation
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of pentaquark widths: It differs substantially from pre-
vious approaches based on assuming pertinent transition
operators for O — KN [2,3]. Details of these studies are
contained in ref. [4] and ref. [5] may be consulted for a
review on SU(3) soliton models.

2 Constrained fluctuations and ©1 width

When restricted to modes spanned by the soliton’s rigid
rotations, the P-wave fluctuations in strangeness direction
have two bound states with eigenenergies
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where @ is the moment of inertia for the rotation of the
soliton into strangeness direction and I is the functional of
the soliton that measures flavor symmetry breaking. The
latter would be zero if the masses of the strange and non-
strange quarks were equal. Both functionals are O(N¢).
The subscript on w4 refers to the strangeness quantum
number of the bound state. Hence wy = N¢/(40k) re-
moves the degeneracy between S = =+1 baryons. This
contribution stems from the Wess-Zumino term in I'[$]. In
accordance with the above discussion wy = O(NZ). While
w_ is the energy of the above-mentioned bound state de-
scribing ordinary hyperons, w; is eventually utilized to
construct pentaquark states.

In the RRA the collective coordinates A(t) € SU(3)
that parameterize the flavor orientation of the soliton are
canonically quantized. The resulting Hamiltonian is (nu-
merically) exactly diagonalized for arbitrary N¢ [4] and
symmetry breaking [6]. The so-computed mass difference
between the states that for No = 3 correspond to the A
(©71) and the nucleon approaches w_ (w;) as Nog — oo.
This suggests that indeed the RRA and BSA are identical
in that limit. This identity has a caveat when the restric-
tion that BSA modes are spanned by the rigid rotation
is removed. Though w_ < mg still corresponds to a true
bound state, w is a continuum state. Thus, a pronounced
resonance structure would be expected in the BSA phase
shift around w = w;. Unfortunately, that is not the case,
as seen from fig. 1. The BSA phase shift hardly reaches
m/2 rather than quickly passing through this value. The
ultimate comparison requires to generalize the RRA to the
rotation-vibration approach (RVA)
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where &o(x) = expli€ - TF(Jx|)/2] is the chiral field
representation of the soliton (@.) and A(t) € SU(3)
parameterizes the collective rotations. Modes that corre-
spond to the collective rotations must be excluded from
the fluctuations 7, i.e. the fluctuations must be orthogonal
to the zero mode z ~ sin(F'/2). Imposing the correspond-
ing constraints for these fluctuations (and their conjugate
momenta) yields integro-differential equations listed in
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Fig. 1. (Colour on-line) Phase shift computed in the BSA
(middle, black line) and the resonance phase (top, red line)
shift after removal of the background (bottom, blue line) con-
tribution in the RVA.

ref. [4]. In the BSA A(¢) is restricted to SU(2) but there is
no constraint on the fluctuations 7. The above-discussed
litmus test requires that the scattering data computed
from 77 and 7 be identical when N¢ is sent to infinity.

For the moment let us omit the coupling between 7
and the collective soliton excitations. This truncation de-
fines the background wave function 77 (also orthogonal to
the zero mode). Treating 77 as an harmonic fluctuation
provides the background phase shift shown as the blue
on-line curve in fig. 1. Remarkably, the difference between
the phase shifts of 77 and 7 clearly exhibits a distinct res-
onance structure. This is the resonance phase shift to be
associated with the @1 pentaquark in the limit No — oo!

The parameterization, eq. (5) is not a solution to the
classical equation of motion, The strategy rather is to
solve them order by order in the N¢ expansion. Hence
the arguments deduced from eq. (2) do not apply and an
interaction Hamiltonian that is linear in the fluctuations
indeed emerges. This generates Yukawa couplings between
the collective soliton excitations and the fluctuations 7. In
ref. [4] we have derived this Hamiltonian keeping all con-
tributions that survive as No — o0o0. The corresponding
Yukawa exchanges extend the integro-differential equa-
tions for 77 by a separable potential Vy, therewith pro-
viding the equations of motion for 7. For No — oo the
equation of motion for 7 is solved by 7 = n — (z|n)z. The
phase shifts extracted from 7 and 7 are identical because
z(|x|) is localized in space. Thus, the BSA and RVA yield
the same spectrum and are indeed equivalent in the large-
N¢ limit. But, the RVA provides a distinction between
resonance and background contributions to the scattering
amplitude. Applying the R-matrix formalism on top of
the constrained fluctuations 77 shows that Vy ezactly con-
tributes the resonance phase shift shown in fig. 1 when the
Yukawa coupling is computed for No — oo. This identifies
the exchange of a state predicted in the RRA which thus is
no artifact. In contrast, pentaquarks are also predicted by
the BSA; just well hidden. Nevertheless, collective coordi-
nates are mandatory to obtain finite- N corrections to the
BSA for the properties of ©F. Though not all O(1/N¢)
operators were included in ref. [4], subleading effects are
substantial. For example, in the case mx = m, the mass
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Fig. 2. Skyrme model prediction for the decay width, I'(w)
of @1 for No = 3 as a function of the kaon momentum k =
w2 —m2, cf. eq. (6). Top curve: mg = my, bottom curves:
MK 7 M.

difference with respect to the nucleon increases by a factor
two from wy to (N¢ + 3)/4O@k for No = 3.

The separable potential V3 also yields the general ex-
pression for the width as a function of the kaon energy

wi = /k? + m3 from the R-matrix formalism [4]:

I'wg) = 2kwo | Xeo /000 r2dr z(r)2X(r)7,, (r)
Yo 2 2 * 2 — ?
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Here 7,,, (|z]) is the P-wave projection of the background
wave function 77 for a prescribed energy wy, and A(|z|) is
a radial function that stems from the Wess-Zumino term.
The matrix elements (Xo and Yg) of the collective co-
ordinate operators that enter eq. (6) are computed from
the eigenstates of the collective coordinate Hamiltonian.
The resulting width is shown for N = 3 in fig. 2 for both
the flavor symmetric case and the physical kaon-pion mass
difference. As a function of momentum, there are only mi-
nor differences between these two cases. Assuming the ob-
served resonance to be the (disputed) @1 (1540) a width
of roughly 40 MeV is read off from fig. 2 [4]. However, fig. 1
suggests that the resonance should be about 200 MeV
above threshold which corresponds to Mg+ =~ 1.65 GeV.
Hence it seems very unlikely that chiral soliton models
predict a light and very narrow pentaquark, though the
numerical results for masses and widths of pentaquarks
are model dependent.

3 Conclusion

In this paper I have presented a thorough comparison [4]
between the bound state (BSA) and rigid-rotator ap-
proaches (RRA) to chiral soliton models in flavor SU(3).
Though I have only considered the simplest such model,
the actual analysis merely concerns the treatment of kaon
degrees of freedom. Therefore the qualitative results are
valid for any chiral soliton model.

A sensible comparison with the BSA requires the con-
sideration of harmonic oscillations in the RRA as well.
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They are incorporated via the rotation-vibration approach
(RVA), however constraints must be implemented to en-
sure that the introduction of such fluctuations does not
double-count any degrees of freedom. The RVA clearly
shows that the prediction of pentaquarks is not an ar-
tifact of the RRA, pentaquarks are genuine within chiral
soliton models. Only within the RVA chiral soliton mod-
els generate interactions for hadronic decays. Technically,
the derivation of this Hamiltonian is quite involved, how-
ever, the result is as simple as convincing: In the limit
N¢ — o0, in which the BSA is undoubtedly correct, the
RVA and BSA yield identical results for the baryon spec-
trum and the kaon-nucleon S-matrix. This identity also
holds when flavor symmetry breaking is included. This
demonstrates that collective coordinate quantization may
be successfully applied regardless of whether or not the
respective modes are zero modes.

In the flavor symmetric case the interaction Hamil-
tonian contains only a single structure (Xo in eq. (6)) of
SU(3) matrix elements for the ©* — K N transition. Any
additional SU(3) structure only enters via flavor symme-
try breaking. This proves earlier approaches [2,3] incorrect
that adopted any possible structure that would contribute
in the large-N¢ limit and fitted coefficients from a variety
of hadronic decays under the assumption of SU(3) rela-
tions. The study presented in this talk thus suggests that it
is not worthwhile to bother about the obvious arithmetic
error in ref. [2] that was discovered earlier [7,8] because
the conceptual deficiencies in such width calculations are
more severe. Assuming SU(3) relations among hadronic
decays is not a valid procedure in chiral soliton models.
The embedding of the classical soliton breaks SU(3) and
thus yields different structures for different hadronic tran-
sitions.

Even in case pentaquarks turn out not to be what some
recent experiments have suggested, they have definitely
been very beneficial in combining the bound state and
rigid-rotator approaches and solving the Yukawa problem
in the kaon sector; both long-standing puzzles in chiral
soliton models.

I am very appreciative to Hans Walliser for the very fruitful
collaboration on which this talk is based. I am grateful to the
organizers for this pleasant conference. Attendance of the con-
ference has been made possible by the DFG under contract We
1254/12-1.
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